

Micro-porous Sorbent for ⁹⁹Mo/^{99m}Tc Generator using (n,γ) ⁹⁹Mo

S. Hasan and L.F. Centofanti Perma-Fix Environmental Services, Inc. (PESI)

2014 Mo-99 Topical Meeting – Washington, DC June 24-27, 2014

- ^{99m}Tc is the most widely used medical isotope worldwide
- The nuclear properties of ^{99m}Tc are ideal for medical imaging and it is used in almost 80% of all diagnostic procedure
- Total market demand of ⁹⁹Mo is approximately between 10,000 to 12,000 six-day Ci per week
- The demand for ⁹⁹Mo isotope for North America's market alone is almost 52% of the total world production

99Mo Production Technologies

- Uranium fission
- Solution reactor
- Neutron activation
- Cyclotron production
- Photo-fission route 100 Mo(γ , ν) 99 Mo
- Neutron fission using spallation neutron sources ¹⁰⁰Mo(n, 2n)⁹⁹Mo

(Source: OECD Report, 2010)

- Highly Enriched Uranium (HEU)
 - □ The majority of the world's ⁹⁹Mo supply comes from thermal fission using HEU as a target
 - □ Reactor outages have resulted in supply shortage
 - □ Continued concern over using HEU as target material
 - Proliferation issues
 - Waste generation

Fission based ⁹⁹Mo Production (cont.)

- Low Enriched Uranium (LEU)
 - □ Limitations similar to HEU ⁹⁹Mo
 - ☐ Generates more waste volume classified HLW
 - □ Requires large specialized aging reactors
 - ☐ Still relies on uranium enrichment to produce target material

Production of ^{99m}Tc using (n,γ) ⁹⁹Mo

- Production of ⁹⁹Mo via the neutron capture method draws attention as an alternative of fission process due to non-proliferation issues and it can be produced at multiple existing currently licensed reactor facilities in the U.S. and around the world, enhancing reliability of continuous supply
- Allows developing countries to create local medical isotope programs
- The main problem with neutron capture method is lower specific activity
- This limitation, however, can be overcome by the use of an adsorbent with higher capacity for molybdenum

Fission vs. Neutron Activation Process

²³⁵ U(n, f) ⁹⁹ Mo	⁹⁸ Mo(n,γ) ⁹⁹ Mo
Requires enriched ²³⁵ U target	Requires high purity molybdenum
Produces high specific activity of ⁹⁹ Mo	Produce low specific activity of ⁹⁹ Mo
Generates high level radioactive waste	Generates minimal waste
Great concern about secondary fission product	No fission product
Export of highly controlled material required	Non-fissile material. No proliferation concerns.

- PESI Approach
 - □ PESI has completed initial development of a prototype ^{99m}Tc generator using a patent pending micro-porous composite (MPCM) resin
 - MPCM can adsorb commercially significant amounts of low specific activity ⁹⁹Mo produced by neutron activation
 - MPCM based ⁹⁹Mo/^{99m}Tc generator has the potential to allow neutron activated ⁹⁹Mo to contribute significantly to the supply chain

MPCM

- MPCM is a biopolymer based micro-porous anionic functional composite resin
- MPCM resin is acid and radiation resistant and has been prepared using phase-inversion and sol-gel technique in the presence of a catalyst.
- The potential use of MPCM as an adsorbent for ⁹⁹Mo/^{99m}Tc generator has been studied in this work

MPCM at a glance

- MPCM was prepared using phase inversion technique
- The surface area of MPCM is very high 15 m²/g with a pore volume of 0.012 cc/g
- MPCM is amorphous in nature
- Temperatures up to 100 °C do not adversely affect the adsorption capacity of MPCM
- MPCM resin is found to be resistant to extreme pH conditions
- The structure of MPCM has been demonstrated to maintain its integrity when exposed to 50,000 Krad Co-60 gamma radiation

SEM micrograph of the MPCM surface

MPCM Key Properties

- MPCM has the capacity to adsorb up to 700 mg of Mo per dry gram compared to alumina that holds approximately 20 mg/g
- The elution efficiency of a MPCM based generator exceeds 80% of the ^{99m}Tc generated
- Cost effective to prepare
- Adsorbs ⁹⁹Mo quickly and efficiently
- Handling and hydraulic properties similar to alumina facilitate generator manufacture

MPCM based 99Mo/99mTc Generator

- MPCM high adsorption capacity allows the use of neutron activated ⁹⁹Mo within a footprint similar to current generator designs
- Creates US Supply Chain
- Internationally creates local supply chain
- Does not require the use of uranium targets
- No "orphan" waste generated
- Cost competitive at existing price structure

Flow diagram for the MPCM based ^{99m}Tc Production

M

Medical Isotope Manufacture

Prototypical Test Results to date

- □ Specific activity of ⁹⁹Mo in 1% molybdenum solution: 1.8 Ci ⁹⁹Mo/g Mo (using Mo-natural in irradiation target material)
- □ Adsorption cycle: 1hr
- □ Percent adsorbed: 95% of available Mo in the solution
- □ ^{99m}Tc release 90% +
- □ Column Bed Volume: 2.5 6.0 mL
- Experiments performed at PESI, POLATOM and MURR

Typical Composition of tested Eluate

Items	Unit
Saline concentration	0.9% NaCl
99mTc Elution efficiency	≥ 80%
⁹⁹ Mo/ ^{99m} Tc	< 0.15µCi/mCi of ^{99m} Tc
Al	< 10 mg/L
рН	4.5 – 7.5

Demonstration of 4 Ci Generator Capacity

■ Plans are underway for continued proof of concept testing at MURR and POLATOM to demonstrate the capability of producing a ~ 4 Ci MPCM generator

- MPCM was prepared using a combination of phase inversion and sol-gel methods in the presence of a catalyst.
- Maximum observed adsorption capacity of MPCM material for Mo was approximately 700 mg/g.
- MPCM based generator shows more than 80% ^{99m}Tc recovery from the column
- Experiments for a MPCM based generator of significantly higher ⁹⁹Mo capacity will be conducted shortly

Timeline to Commercialization

- Perma-Fix has developed a resin that facilitates the use of $(n,\gamma)^{99}$ Mo with minimal changes to generator operation
- We are in discussions to develop a $(n,\gamma)^{99}$ Mo supply chain
- Conceptual design of a prototype generator is being finalized
- A subsidiary company, Perma-Fix Medical Corporation, has been established in Europe to raise capital, develop formal business relationships, and bring our MPCM generator technology to the world market
- FDA application process is anticipated to begin in 4th Quarter 2014

Questions?

Dr. Louis Centofanti

Perma-Fix Environmental Services, Inc.

8302 Dunwoody Place, Ste. 250

Atlanta, GA 30350

1-770-587-9898

lcentofanti@perma-fix.com

